# The Tube in Tube Two Fluid Approach

March 29th 2010

2<sup>nd</sup> Thorium Energy Conference

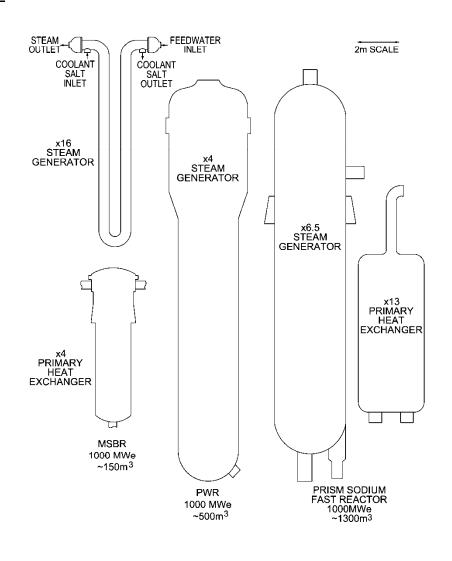
Dr. David LeBlanc

Physics Dept, Carleton University, Ottawa & Ottawa Valley Research Associates Ltd.

d\_leblanc@rogers.com

## Advantages of all Liquid Fluoride Reactors

#### Ultimate in Safety


- No pressure vessels
- No chemical driving forces (steam build up or explosions, hydrogen production etc)
- No volatile fission products in the salt (as they are passively and continuously removed)
- No excess reactivity needed
- Very stable with instantly acting negative temperature reactivity coefficients
- Freeze valve drains salt to tanks designed to remove decay heat

## Advantages of all Liquid Fluoride Reactors

#### Potential for low capital cost

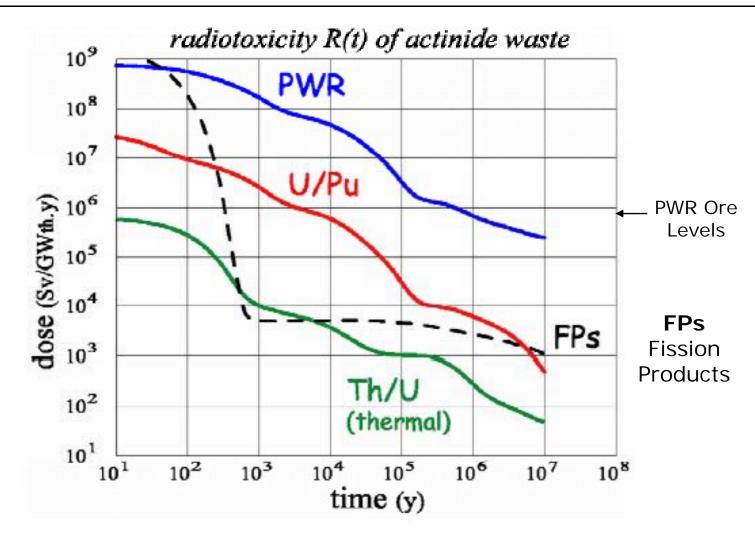
- Molten salts are excellent coolants so heat exchangers and pumps smaller and easy to fabricate
- This has a trickle down effect on building design, construction schedules and ease of factory fabrication
- High thermal efficiency on either Steam or Gas Brayton (He, CO2, N2)
- No need for elaborate "defence in depth" or massive internal structures for steam containment and vast water reserves

# Comparing Heat Exchange Equipment MSBR vs PWR vs Sodium FBR



## Advantages of all Liquid Fluoride Reactors

- Resource Sustainability
  - Once started many designs only require minor amounts of thorium (about 1 tonne per GWe year)
  - At the most, some designs may require modest amounts of uranium (20 to 35 tonnes per GWe year versus 200 tonnes for LWRs)


## Advantages of all Liquid Fluoride Reactors

- Very Low Long Lived Radiotoxicity
  - Fission products almost all benign after a few hundred years
  - It is the transuranics (Np,Pu,Am,Cm) that are the real issue and reason for "Yucca Moutains"
  - All designs produce much less TRUs and these can be recycled back into the reactor to fission off

### Radiotoxicity PWR vs FBR\* vs LFR\*

\*Assuming 0.1% Loss During Processing

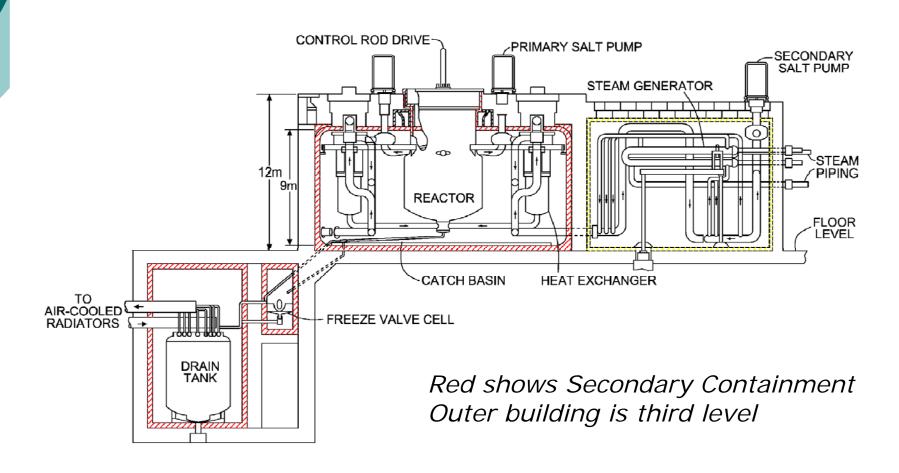
Data and graph from Sylvain David, Institut de Physique Nucléaire d'Orsay



Turns waste management into 500 year job, not million year

# What factors differentiate between various Liquid Fluoride designs?

- R&D required and level of technological uncertainty
- Start up requirements of fissile material and thus deployability
- Whether fission product removal is required and if so, its degree of difficulty
- Reactivity coefficients
- Degree of Proliferation Resistance
  - All very good but still major differences


#### First Question: Breeder or Converter?

- Breeders offer the ultimate in minimising resource usage but at the capital and R&D cost of fuel processing
- Converters require an outside fissile source but greatly simplify development and operation

### Comparing Proposed Breeder Designs

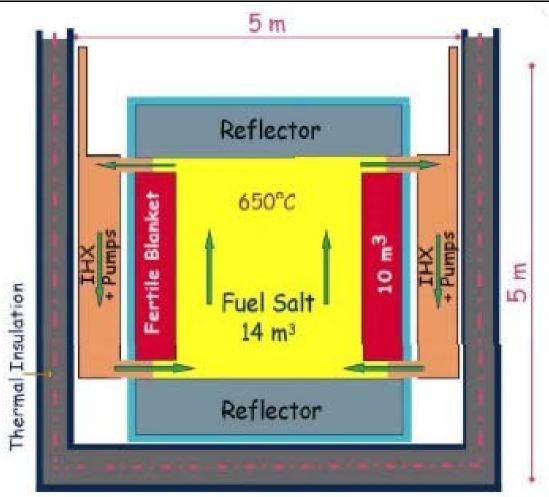
- Single Fluid Graphite (70s MSBR)
- DMSR Breeder
- 1 ½ Fluid (TMSR, now called MSFR)
- Interlaced Two Fluid (mid 60s MSBR)
- O Non Interlaced Two Fluid?
- New Tube within Tube design

## Single Fluid Graphite MSBR (70s)



## Single Fluid Graphite MSBR (70s)

- ADVANTAGES
- Relatively simple core
- No structural material or barriers needed within strong neutron flux
- Modest starting Inventory (1.5 t/GWe)
- High thermal inertia (slow to change temp as lots of salt and graphite)
- As with any practical design, negative temperature coefficient (at least initially)


## Single Fluid Graphite MSBR (70s)

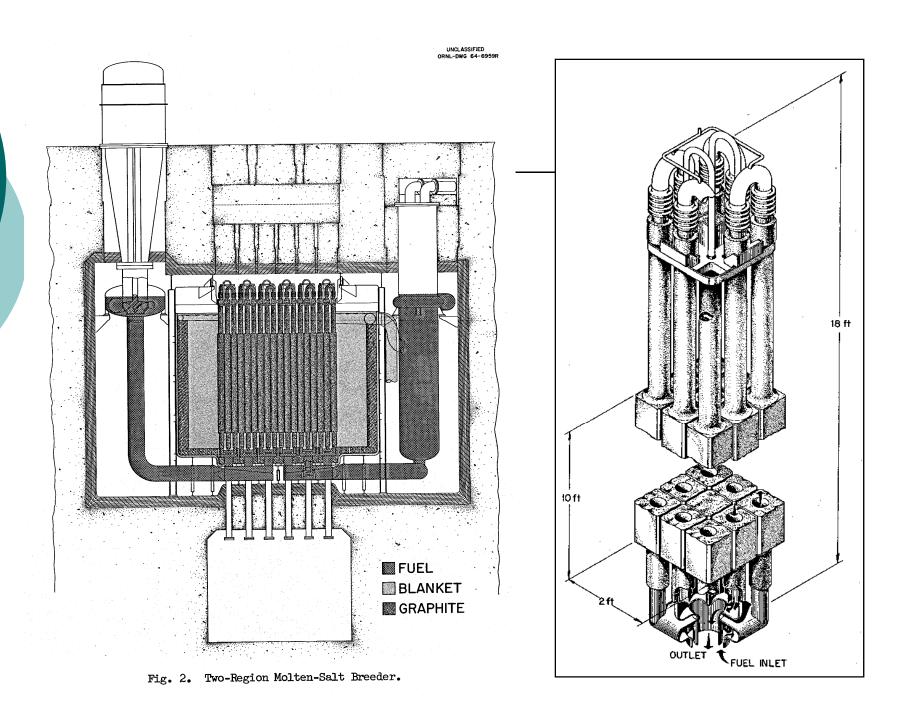
- DISADVANTAGES
- Complex and rapid fission product removal with much R&D needed
- The longer term reactivity coefficient (10s of seconds after any power surge) may be slightly positive
- To start, needs hard to obtain U233 or LWR transuranics which are of limited availability for large fleet deployment

### Late 1970s DMSR Breeder

- ORNL late 70s version of the standard MSBR but denatured with U238
- Proposed to increase proliferation resistance
- Added benefit of much better reactivity coefficients than MSBR
- Easy startup on Low Enriched Uranium
- However, even more complex fission product removal to just barely break even

## 1 ½ Fluid MSFR (was TMSR)




Design has a thorium blanket but only radial, not axially (which would be very difficult)

## 1 ½ Fluid MSFR (was TMSR)

- Advantages
- Much lower daily processing rate than the MSBR (but just as complex)
- No graphite to replace or dispose of
- Very good reactivity coefficients
- Compact, fairly simple core
- Very high breeding ratio possible (upwards of 1.12 vs 1.06 of MSBR)

## 1 ½ Fluid MSFR (was TMSR)

- Disadvantages
- Large fissile inventory (5-8 t U233, Pu)
- Calls for much higher temp of 800 °C (mainly to assure solubility of PuF3)
- Much materials R&D needed for barrier to blanket and axial reflectors (higher temp and strong neutron flux)
- Blanket salt likely has weakly positive temp reactivity coefficient?
- Very small thermal inertia (15 m³ salt)



#### Mid 60s ORNL Two Fluid MSBR

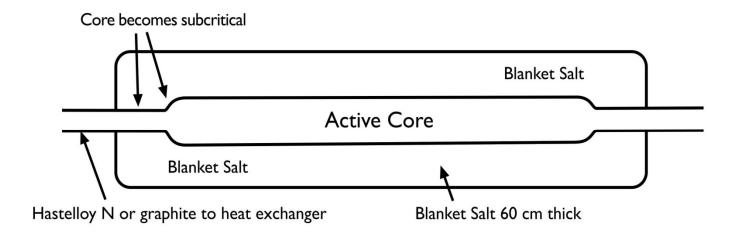
- Advantages
- Much simpler removal of fission products as no thorium in fissile salt
- Only graphite in strong neutron flux
- Strong negative temp coefficient for fissile salt
- Very low fissile (0.7 t/GWe)

#### Mid 60s ORNL Two Fluid MSBR

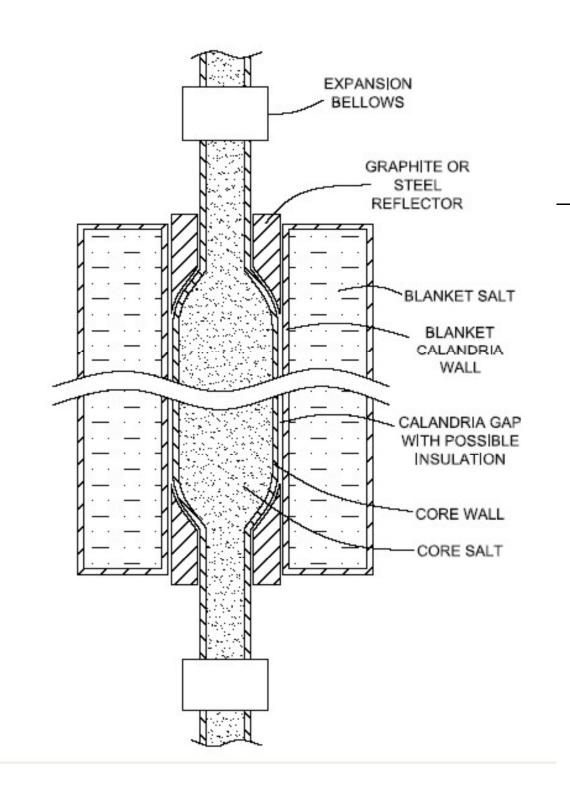
- Disadvantages
- Core plumbing a huge challenge as graphite shrinks then swells
- A single tube failure means entire core replaced
- Strongly Positive temp coefficient for blanket salt

## Why Interlace the Two Fluids?

#### Liquid-fluoride thorium reactor




# Why Interlace the Two Fluids? As ORNL often explained...


- If you do not interlace, the core is only about 1 m in diameter (with or without graphite is about the same)
- Since power density is limited for many reasons, If you stick to short cylinder geometry, total power is quite small (especially with graphite)

### Tube within Tube Geometry

Side View of Reactor Core and Surrounding Blanket Salt
Core is Graphite + Fuel Salt or 100% Fuel Salt
Typical Diameter of 1 meter



Expands power producing volume while maintaining the small inner core needed for a simple Two Fluid design



## New Concepts Advantages

- Can use simple Two fluid fuel processing without the "plumbing problem"
- Very strongly negative fuel salt coefficients
- Blanket will also have negative temp/void coefficient as it acts as a weak reflector
- Simple, transportable cores
- Ease of modeling and prototyping
- Fissile inventory of 400 kg per GWe or even lower is possible.

## **Tube within Tube Geometry**

- Disadvantages
- Like any Two Fluid design, a barrier within neutron flux must be maintained and not allow fissile salt to enter blanket
  - All Two Fluid designs run fissile salt at higher pressure (any leak will be blanket inwards)
- Core is not in minimally reactive configuration (but no Two Fluid design ever is)
  - If graphite is used, run horizontally
  - Even worst case scenario would only appear to make an expensive mess within secondary containment zone (with the containment building itself as backup)

### Critical Issue: Core-Blanket Barrier

- Viability of barrier materials in high neutron flux
  - Much recent work in the fusion field using same 2<sup>7</sup>LiF-BeF<sub>2</sub> salt as coolant
  - Molybdenum, SiC/SiC or simple carbon composites leading candidates
  - Hastelloy N also possible as new French work suggests
  - Ease of "retubing" means even a limited lifetime still may be attractive

#### Conclusions

- The tube in tube Two Fluid approach may offer the best overall breeder (break even) package
- Of course though there is need to further evaluate all options and good to pursue several routes